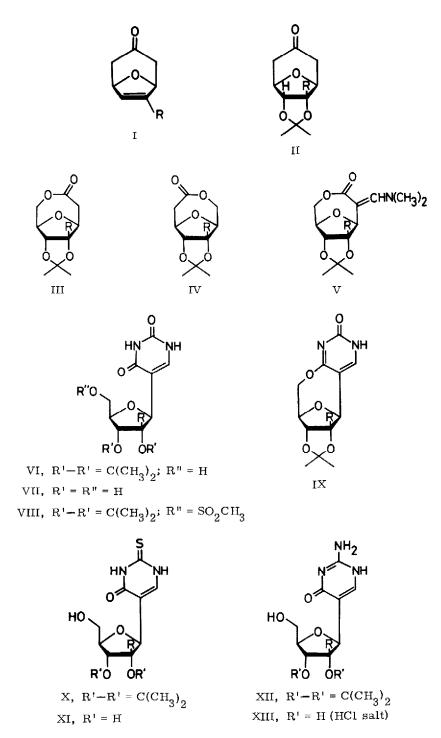
SYNTHESIS OF 2'-METHYLATED PYRIMIDINE C-NUCLEOSIDES¹


T. Sato, H. Kobayashi, and R. Noyori^{*}

Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan

<u>Summary</u>: The title <u>C</u>-nucleosides have been prepared in a direct and stereocontrolled manner through the polybromo ketone/furan cyclocoupling approach.

Introduction of methyl group to the C-2' or C-3' position of certain nucleosides is known to retard the enzymatic destruction, thereby increasing the biological activities markedly.² In addition, 2'-methylated nucleosides might be expected to mimic 2'-deoxy nucleosides either by lowering the chemical activity of the 2'-hydroxyl function³ or by changing conformation of normal ribofuranosyl skeleton. However, only limited number of reports^{2,4} are present for the synthesis of such analogues mainly because of difficulty in preparation of branched-chain sugar moieties.⁵ Described herein is the first, general synthesis of 2'-methylated pyrimidine <u>C</u>-nucleosides, which is based on the efficiency of the [3 + 4] reductive cyclo-coupling reaction of polybromo ketones and furans.⁶

The oxabicyclic ketone I was obtained in 86% yield by the reductive cyclocoupling of $\alpha, \alpha, \alpha', \alpha'$ -tetrabromoacetone and 3-methylfuran using Zn/Ag couple⁷ (3:1:2 ratio, THF, 20 °C, 14 h), followed by removal of bromine atoms from the [3 + 4] adduct $(Zn/Cu \text{ couple, CH}_{o}OH$ saturated with $NH_{4}Cl$, 20 °C, 1 h). The unsaturated ketone I was then converted specifically to the acetonide $II^{\frac{3}{8}}$ in 78% yield (1.8 equiv of <u>N</u>-methylmorpholine-<u>N</u>-oxide, 1 mol % of OsO₄, $(CH_3)_2CO-H_2O-t-C_4H_9OH;$ ⁹ then acetone-anhyd CuSO₄-p-TsOH). The α configuration was substantiated by occurrence of the NMR signal for the C-3' hydrogen (pseudouridine numbering; indicated as H in formula II) as a singlet at δ 4.15.¹⁰ In the subsequent Baeyer-Villiger oxidation with CF₂CO₂H, presence of the methyl substituent at C-2' gave a bias toward the production of III as the major regioisomer (52% yield¹¹ or 84% yield based on consumed II, $\text{III}^{12}/\text{IV}^{13} = 67:33$). Then introduction of a one-carbon unit to III at position α to the carbonyl group was effected with t-butoxybis(dimethylamino)methane (excess, DMF, 70 °C, 1 h) to afford V in 63% yield. This compound serves as a versatile intermediate for the synthesis of various pyrimidine C-nucleosides. For example, base-catalyzed reaction of V and urea (7 equiv, 1 M C_2H_5ONa in C_2H_5OH , reflux, 3 h), giving VI¹⁴ (32%), followed by removal of the isopropylidene blocking group (10% HCl in CH3OH, 25 °C, 60 min, 96%) gave

All R substituents in the formulas are CH_3 group.

5-(2-methyl- β -ribofuranosyl)uracil (2'-methylpseudouridine) (VII).^{15,16} The β stereochemistry at the anomeric, C-1' position was established chemically by converting VI to the cyclo-<u>C</u>-nucleoside IX; the mesylate VIII derived from VI (CH₃SO₂Cl, pyridine, 20 °C, 14 h, 83%) was cyclized by 1,5-diazabicyclo[5.4.0]undec-5-ene (CH₃CN, 80 °C, 3 h)¹⁷ to form IX in 81% yield. When UV spectrum of IX in CH₃OH (λ_{max} 293 nm, ε 3080) was compared with that of the corresponding open form VI (λ_{max} 265 nm, ε 7430), a well-known, characteristic bathochromic shift¹⁸ was observed.

Elaboration of a heterocycle onto the lactone V by use of thiourea (7 equiv, 1 M C_2H_5 ONa in C_2H_5 OH, reflux, 3 h) and deprotection of the resulting X (10% HCl in CH₃OH) provided 5-(2-methyl- β -ribofuranosyl)-2-thiouracil (XI)¹⁵ in 68% yield. Similarly, condensation of V and guanidine, giving XII, and subsequent acid deblocking under standard conditions led to 5-(2-methyl- β -ribofuranosyl)isocytosine (XIII) as HCl salt^{15, 19} in 61% yield.

Thus we could open a stereocontrolled, general way to a variety of C-2' alkylated pyrimidine <u>C</u>-nucleosides starting from nonsugar materials.

Acknowledgment. This work was partially supported by the Yamada Science Foundation.

REFERENCES AND NOTES

- 1. <u>C</u>-Nucleoside Synthesis. 10. Part 9: T. Sato and R. Noyori, <u>Bull. Chem. Soc. Jpn.</u>, in press.
- E. Walton, S. R. Jenkins, R. F. Nutt, M. Zimmermann, and F. W. Holly, <u>J. Am. Chem.</u> <u>Soc.</u>, <u>88</u>, 4524 (1966); S. R. Jenkins, B. Arison, and E. Walton, <u>J. Org. Chem.</u>, <u>33</u>, 2490 (1968).
- 3. H. T. Shigeura and S. D. Sampson, Nature, 215, 419 (1967).
- 4. H. P. Albrecht and J. G. Moffatt, <u>Tetrahedron Lett.</u>, 1063 (1970); A. Rosenthal, M. Sprinzl, and D. A. Baker, <u>Tetrahedron Lett.</u>, 4233(1970); A. J. Brink, O. G. de Villers, and A. Jordaan, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 1</u>, 1608 (1977); J. M. J. Tronchet and J. F. Tronchet, <u>Helv. Chim</u>, <u>Acta</u>, 62, 689 (1979).
- For synthesis of branched-chain sugars, see H. Grisebach and R. Schmid, <u>Angew. Chem.</u>, <u>Int. Ed. Engl.</u>, <u>11</u>, 159 (1972); H. Paulsen, <u>Pure Appl. Chem.</u>, <u>49</u>, 1169 (1977); P.-T. Ho, <u>Tetrahedron Lett.</u>, 1623 (1978); P.-T. Ho, <u>Can. J. Chem.</u>, <u>57</u>, 381, 384 (1979).
- 6. R. Noyori, Acc. Chem. Res., 12, 61 (1979).
- 7. T. Sato and R. Noyori, Bull. Chem. Soc. Jpn., 51, 2745 (1978).
- Mp 72.0-73.0 °C. IR (CHCl₃) 1720 cm⁻¹ (C=O). ¹H NMR (CDCl₃) δ 1.41 (s, CH₃), 1.41 and 1.50 (s, isopropylidene CH₃), 2.2-2.9 (m, H₅ and H₅), 4.15 (s, H₃), 4.45 (t-like,

 $J = 5.0 \text{ Hz}, H_1, \text{ and } H_4$).

- V. VanRheenen, R. C. Kelly, and D. Y. Cha, <u>Tetrahedron Lett.</u>, 1973 (1976); V. VanRheenen, D. Y. Cha, and W. M. Hartley, Org. Synth., 58, 43 (1978).
- 10. R. Noyori, T. Sato, and Y. Hayakawa, J. Am. Chem. Soc., 100, 2561 (1978).
- 11. The presence of the methyl group retards the oxidation considerably. A competition experiment revealed that II ($R = CH_3$) reacts four times slower than the parent ketone (II, R = H).
- 12. Mp 132-133 °C. IR (CHCl₃) 1731 cm⁻¹ (C=O). ¹ H NMR (C₆D₆) δ 1.28 (s, CH₃), 1.28 and 1.48 (s, isopropylidene CH₃), 2.26 (dd, <u>J</u> = 3.2, 17.0 Hz, H_{5a}), 2.52 (dd, <u>J</u> = 4.2, 17.0 Hz, H_{5b}), 3.38 (dd, <u>J</u> = 3.3, 14.6 Hz, H_{5'a}), 3.58 (d, <u>J</u> = 14.6 Hz, H_{5'b}), 3.82 (m, H₁, and H₄), 4.34 (s, H₃).
- 13. Mp 129.5-130 °C. IR (CHCl₃) 1736 cm⁻¹ (C=O). ¹H NMR (C₆D₆) δ 1.32 (s, CH₃), 1.34 and 1.48 (s, isopropylidene CH₃), 2.24 (dd, <u>J</u> = 3.0, 16.0 Hz, H_{5a}), 2.52 (dd, <u>J</u> = 4.8, 16.0 Hz, H_{5b}), 3.38 (dd, <u>J</u> = 3.2, 14.0 Hz, H_{5'a}), 3.62 (d, <u>J</u> = 14.0 Hz, H_{5'b}), 3.78 (m, H₁, and H₄), 4.14 (s, H₂).
- 14. Mp 126-128 °C. ¹H NMR (dimethyl-d₆ sulfoxide) δ 1.12 (s, CH₃), 1.32 and 1.51 (s, isopropylidene CH₃), 3.52 (d-like, J = 4.0 Hz, H₅), 3.92 (m, H₄), 4.30 (d, J = 3.0 Hz, H₃), 4.80 (s, H₁), 7.34 (s, H₆).
- 15. All compounds described here are racemic mixtures.
- 16. Mp 138-142 °C. ¹H NMR (dimethyl- \underline{d}_{6} sulfoxide) δ 0.99 (s, CH₃), 3.60 (m, H₃, H₄, and H₅), 4.00 (br, OH), 4.68 (s, H₁), 7.60 (d, $\underline{J} = 5.0$ Hz, H₆), 10.78 (d, $\underline{J} = 5.0$ Hz, H₁), 10.99 (br, H₃). ¹³C NMR (dimethyl- \underline{d}_{6} sulfoxide) δ 20.95 (CH₃), 60.31 (C₅), 73.57, 77.99, 81.31, 81.53 (C₁, -C₄, of ribose), 112.13, 138.92, 150. 90, 163.68.
- 17. K. A. Watanabe, U. Reichman, C. K. Chu, and J. J. Fox, "Nucleic Acid Chemistry", Part 1, L. B. Townsend and R. S. Tipson Ed., Wiley-Interscience, New York, N.Y., 1978, p. 273.
- 18. A. M. Michelson and W. E. Cohn, Biochem., 1,490 (1962).
- 19. Mp 222-225 °C. ¹H NMR (dimethyl- \underline{d}_6 sulfoxide) & 1.02 (s, CH₃), 3.62 (m, H₃, H₄, and H₅), 4.70 (s, H₁), 7.88 (s, H₆), 8.48 (br, NH₂). ¹³C NMR (dimethyl- \underline{d}_6 sulfoxide) & 20.84 (CH₃), 60.20 (C₅), 73.35, 78.28, 80.97, 81.64 (C₁, -C₄, of ribose), 117.18, 138.33, 152.50, 159.53. UV λ_{max} (CH₃OH) 224 nm (ε 10700), 265 (6890), λ_{max} (0.1N HCl) 222 nm (ε 5800), 264 (4250), λ_{max} (0.1N NaOH) 233 nm (ε 9010), 280 (6750).

(Received in Japan 24 February 1980)